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Blind noisy image separation based on a new robust
independent component analysis network
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The separation of noisy image is a very exciting area of research, especially when no prior information
is available about the noisy image. In this paper, we propose a robust independent component analysis
(ICA) network for separation images contaminated with high-level additive noise or outliers. We reduce
the power of additive noise by adding outlier rejection rule in ICA. Extensive computer simulations confirm
robustness and the excellent performance of the resulting algorithms.

OCIS codes: 100.0100, 100.3020, 200.4260.

Blind source separation (BSS) is an important field of
research in signal processing and data analysis[1]. Inde-
pendent component analysis (ICA) is one solution to the
problem. The meaning underlying ICA is to separate
the original signals into several independent components
by selecting a particular criterion and an optimal algo-
rithm. Though the basic knowledge of the sources and
the transmitting channels is unknown, the probability to
realize this decomposition lies in the principle of statisti-
cal independence.

Let us assume that an array of sensors provides a vec-
tor of n observed signals x = [x1, x2, · · · , xn]T that are
linear mixtures of n ≥ m unobserved random processes
s = [s1, s2, · · · , sm]T sources. The basic problem of ICA
is defined for the noiseless case, where the sources and
observations have the following linear relation[2]

x = As, (1)

where A is an unknown n × m full-column rank matrix
that represents the mixing system.

However, in practical applications, the observed signals
tend to be the multidimensional mixture of independent
sources and are always corrupted by noise. In these cases,
we cannot ignore noise. Therefore, Eq. (1) is not enough
to describe the problem. Then we discuss the case where
there is additive noise in observations as

x = As + e, (2)

here e = [e1, e2, · · · , en]T is the vector of noise compo-
nents which are assumed to be Gaussian and statistically
independent of the sources.

In order to recover the sources, the observations are
processed by a m × n separating matrix B to produce
the vector of outputs or sources estimation

y = Bx. (3)

There are a number of efficient adaptive, on-line learn-
ing algorithms that have been developed for ICA[3,4].

Although the underlying principles and approaches are
different, many of the techniques have very similar forms.
Most of these algorithms assume that any measurement
noise within the mixed signals can be neglected. Thus,
the problem of efficiently reducing the influence of noise
on the performance of algorithms for ICA arises, and in
particular, methods are desired to reduce noise in the
stochastically independent extracted components.

In this paper, we propose a robust ICA network to
blind separate images from noisy mixtures. We believe
that a way to obtain robust estimates for both the mixing
matrix and the sources is to remove the worst outliers in
a pre-processing step, before running the ICA algorithm.
At the same time we want to be careful not to remove
too many points. After a pre-processing stage means of
PCA, we remove outliers by applying outlier rejection
rules. Then we apply the ICA method on the clean data
set. We experimentally verified that the robust ICA
network enables us to increase robustness against noise.

Figure 1 shows the three-layer robust ICA network,
where the first layer performs pre-whitening (sphering),
the second layer is flag noisy using rejection rule, and
the third one is that separation of sources uses existing
ICA algorithms. We describe these three main steps in
detail as follows.

1) Pre-whitening: In ICA algorithms, the data vec-
tors x are often preprocessed by whitening (sphering):
v = V x. Here v denotes the whitened vector satisfy-
ing E[vvT] = I, where I is the unit matrix, and V is a
m×n whitening matrix. In general, principal components

Fig. 1. Three-layer robust ICA network for pre-whitening,
noisy rejection, and blind separation.
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analysis (PCA) is used to do whitening. After prewhiten-
ing the subsequent m × m separating matrix W can be
taken orthogonal, which often improves the convergence.
Thus in whitening approaches the total separating ma-
trix is B = WV .

2) Rejection rules for remove outliers: All of the ICA
methods assume that the mixed data are homogeneous,
that is free of outliers which is not held in most cases.
Data often (always) contain outliers. The contaminated
data affect the ICA algorithm and result in an estimated
sources, which is different from the original[5]. In order
to avoid this problem, we introduce an outlier detection
and elimination process. ICA techniques are then applied
to the cleaned data set to obtain the estimated sources.

We will try two rules for flagging outliers in the raw
data[6]. They are based on different distances or outlying
measures computed at each data point. The correspond-
ing rejection rule then flags all points whose outlyingness
exceeds a certain cutoff value.

First the data points of the data matrix xi are pro-
jected on a subspace defined by means of a measure of
outlyingness. This measure is obtained by projecting the
data points on many univariate directions z. For every
direction a robust center and scale of the projected data
points x′

iz are computed, namely the univariate minimum
covariance determinant (MCD) estimator[7] of location
μ̂i

MCD and scale σ̂i
MCD. The outlyingness of a data point

xi is then measured by

outl(xi) = max
z∈B

|x′
iz − μ̂i

MCD|
σ̂i

MCD

, (4)

where B contains all directions (unit length vectors) we
search over. Then we obtain a subspace with the small-
est outlyinhness that fits the data well. We project the
data points on this subspace where we robustly estimate
their locations and their scatter matrixes by means of
the MCD estimator, of which we compute its m non-zero
eigenvalues l1, · · · , lm. The corresponding eigenvectors
are the m robust principal components. Formally, writ-
ing the (column) robust eigenvectors next to each other
yields the n×m matrix P with orthogonal columns. The
location estimate is denoted as the column vector μ̂ and
called the robust center. Thus, projecting the observa-
tions onto this subspace yields the scores ti, it satisfies

ti = (xi − μ̂′)P. (5)

To distinguish between regular observations and the
outliers, we take into account the orthogonal distance
ODi of each observation to the PCA space

ODi = ‖xi − μ̂ − Pt′i‖ . (6)

The first rejection rule flags all points whose robust
distance ODi exceeds a cutoff value.

We also consider the score distance SDi which repre-
sents the distance inside the PCA space taking into ac-
count the covariance structure of the data. More formally
this distance is defined by

SDi =
√

tTi L−1ti, (7)

where L is the diagonal matrix with the eigenvalues
l1, · · · , lm. The corresponding rejection rule flags all
points whose outlyingness SDi exceeds a cutoff.

We can distinguish between four types of observations
as follows: regular data (with small SD and small OD)
form one homogeneous group that is close to the PCA
space; good PCA-leverage points (with large SD and
small OD) that lie close to the PCA space but far from
the regular observations; orthogonal outliers (with small
SD and large OD) whose orthogonal distance to the PCA
space is large but which we cannot see when we only look
at their projection on the PCA space; and bad PCA-
leverage points (with large SD and large OD) that have
a large orthogonal distance and whose projection on the
PCA subspace is remote from the typical projections. So
we can flag three types of outliers and keep the regular
data.

3) ICA algorithms for separation: After rejecting out-
liers in the raw data, we apply existing ICA algorithms
for blind separation. In this paper, we use EICA and
FastICA algorithms. Equivariant (EICA) algorithm is
a quasi-Newton iteration that will converge to a saddle
point with locally isotropic convergence, regardless of the
distributions of sources. It has the following equivariant
and robust in respect to Gaussian noise algorithm[8]

ΔB(l) = B(l + 1) − B(l)

= ηl[I − C1,q(y, y)Sq+1(y)]B(l), (8)

where Sq+1(y) = sign(diag(C1,q(y, y))), Cp,q(y, y) de-
notes the cross-cumulant matrix whose elements are
[Cp,q(y, y)]ij = Cum( yi · · · yi︸ ︷︷ ︸

p

, yj · · · yj︸ ︷︷ ︸
q

).

One iteration of the generalised fast fixed-point (Fas-
tICA) algorithm for finding a row vector wT

i of W is[9]

w∗
i = E{vg(wT

i v)} − E{g′(wT
i v)}wi,wi = w∗

i /‖w∗
i ‖,

(9)

here g(t) is a suitable nonlinearity, typically g(t) = t3 or
g(t) = tanh(t), and g′(t) is its derivative.

Computer simulations were carried out to verify the
performance of the proposed algorithm. Source images
include four gray-level figures[10]: Lenna, Baboon, Man-
del, and a noise (Fig. 2(a)). The size of each image is
128 × 128. We add 10-dB Gaussian white noise to the
data. Then four noisy mixture images (Fig. 2(b)) were
generated from source images.

Now we use robust ICA network to separate noisy mix-
ing images. In order to verify the performance of the
proposed algorithm, we separate images using ERICA
algorithm, ERICA algorithm with reject rules, FastICA
algorithm and FastICA algorithm with reject rules re-
spectively. Figure 2(c) is the results only using ERICA
algorithm, Fig. 2(d) is the results using ERICA algorithm
with reject rules, Fig. 2(e) is the results only using Fas-
tICA algorithm, and Fig. 2(f) is the results using Fas-
tICA algorithm with reject rules.

We use the inaccuracy measure[11] to measure whether
unmixing matrix B has done a good job
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Fig. 2. (a) Source images s; (b) noisy mixtured images x; (c) only use EICA; (d) use EICA with rejection rules for remove
outliers; (e) only use FastICA; (f) use FastICA with rejection rules for remove outliers.

INACC =
M∑
i=1

(
m∑

j=1

|Qij |
maxk |Qik| − 1

)
+

m∑
j=1

(
m∑

i=1

|Qij |
maxk |Qkj | − 1

)
2m(m − 1)

,

(10)

where Q = BA = (Qij)i,j=1,··· ,m. In the ideal case, IN-
ACC = 0. At the other extreme, the worst case is when
all |Qij | are equal, and then INACC = 1. The ability
of separation with different algorithms is listed as fol-
lows. The INACC for the separation images of only using
RICA and FastICA are found to be 17.78% and 17.72%,
respectively. But the INACC for the separation images
of use RICA and FastICA with reject rules are found to
be 4.91% and 5.75%, respectively. We note that results
of the two separations with reject rules have lower IN-
ACC than results of only using ICA.

A robust ICA network for blind images separation is
proposed under the conditions that the sensor signals are
contaminated with a high-level additive noise and out-
liers. The method is to preprocess the data by rejecting
outliers based on orthogonal distance and score distance
outlyingness measure, using a high enough cutoff value.
As always, it is good to compare the ICA result with the
robustified one.

Although the outlier sensitivity of ICA algorithms and
rejection rules for remove outliers were demonstrated in
this paper, two important considerations must be kept in
mind. First, the ICA algorithms were designed to per-
form optimally for the cases considered, and may not
be optimal for other cases. Second, the computational
complexity of the method requires considerate amount
of time. The interplay between the efficiency of compu-

tational processing and the sensitivity to outliers should
be investigated further to improve the evaluation of the
outlier robustness of ICA algorithms.
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